
VyZX: Formal Verification of a Graphical
Quantum Language

Lehmann, Caldwell, Shah, Rand (UChicago)

Presented by Wil Cram

November 5, 2025

Outline

1. Motivation

2. The ZX Calculus

3. VyZX

4. Conclusion

Motivation

This circuit is easy enough to optimize...

|0⟩ H H

⇓

|0⟩

Motivation

What about this one?

|0⟩ H Rz(π/4)

|0⟩ Ry (π/6) H H X

|0⟩ H X Z

|0⟩ T S

Motivation

We want a form for these circuits that is easier to reason about
when doing compiler optimizations

The ZX-Calculus is such a form that has a minimalist structure

H

The main contribution of this paper is VyZX, a tool for doing
formal proofs in this ZX-Calculus

Why Should You Actually Care?

The ZX-Calculus is a tool for reasoning about program semantics

This means we can use it for:

1. Circuit Optimization

2. Formal Verification

3. Equality Validation

The PyZX1 library can translate Quipper circuits to a ZX diagram,
optimize in this domain, then translate back to a quantum circuit

1https://github.com/zxcalc/pyzx

Outline

1. Motivation

2. The ZX Calculus

3. VyZX

4. Conclusion

ZX Calculus - Intro

ZX Diagrams are undirected graphs that contain two kinds of
nodes, the first is a Z-Spider:

α

These have n input wires and m output wires, and represent a
matrix

|0⟩⊗m ⟨0|⊗n + e iα |1⟩⊗m ⟨1|⊗n

ZX Calculus - Intro

X-Spiders do the same thing, but in the Hadamard basis:

α

|+⟩⊗m ⟨+|⊗n + e iα |−⟩⊗m ⟨−|⊗n

A blank node means there is zero phase.

ZX Calculus - Examples

The (1,1) Z and X spiders with phase π are just the Z and X gates

The (0,2) Z spider with phase 0 is (up to normalization) the bell
state

The CNOT gate looks something like this:

We can draw it shifted either way due to an important principle:
Only Connectivity Matters

Soundness and Completeness

A deep result (which took a decade to prove!) says that
ZX-Calculus is sound and complete with respect to the category
Qubit, which has objects

⊗
n C2 for all n

This means that any theorem we can prove in Qubit holds in
ZX-Calculus and vice versa

But how do we prove things in ZX-Calculus?

Rewriting Rules - Fusion

Given two adjacent spiders of the same color, we can fuse them
together by adding their phases:

α β
fusion

α+ β

The reverse process also holds: we can break spiders apart into
spiders of smaller angles

Rewriting Rules - Basis Change

Hadamards are not a primitive notion in ZX-Calculus; they can be
constructed by composing Z and X spiders

We can do a change-of-basis procedure to switch the color of a
spider:

α

H

H

H

H

color change

α

Example: 3 CNOTs ∼= SWAP

Thanks to Fabrizio Genovese!

ZX Calculus - Abstraction

After composing a bunch of spiders, we can encapsulate the
ZX-Diagram as a morphism in Qubit (a matrix)

We have ways to combine these morphisms in serial and in parallel:
notice the correspondence between the graphical manipulations
and the related linear-algebraic operations

Outline

1. Motivation

2. The ZX Calculus

3. VyZX

4. Conclusion

Aside - Theorem Provers

Theorem Provers are programming languages that allow one to
prove theorems by writing programs

They can be used for both mathematical theorems (Lean2) and
formal verification of programs (Rocq3).

Rocq is interactive in the sense that you can step through your
proof and watch the ”proof state” change over time

2https://leanprover-community.github.io/mathlib-overview.html
3https://rocq-prover.org/

VyZX

VyZX is a library for Rocq that allows for proving theorems in the
ZX-Calculus

The authors have also written an extension (ZXViz) which turns
the (often complicated) textual proof state into a ZX-Diagram

Internal Representation - Diagrams

In Rocq, we can inductively define a datatype for ZX-diagrams
with in inputs and out outputs, called ZX in out

in out : N α : R
Z in out α : ZX in out

∅
Wire : ZX 1 1

f: ZX in mid g: ZX mid out

Compose f g: ZX in out

Internal Representation - Matrices

We can again define a denotation of our ZX-diagrams, with

[[.]] : ZX n m → C2m×2n

[[Z n m α]] = |0⟩⊗m ⟨0|⊗n + e iα |1⟩⊗m ⟨1|⊗n

[[Wire]] = I2

[[Compose f g]] = [[g]][[f]]

One corollary of soundness is that applying the rewriting rules
never changes the denotation

Translation and Results

VyZX assumes that circuits are written using H,X ,Rz(α),CNOT ,
and translates these gates to corresponding spiders

The stacking and composition rules can then be used to put the
whole circuit together as a ZX-Diagram

The authors formally verified the bell state preparation circuit, as
well as the below set of peephole circuit optimizations

Using VyZX

The rewrite rules from before are encoded as Rocq lemmas which
we can use to advance the proof

The syntactic constructions of ZX-Diagrams give an implicit
associativity to the diagrams

Keeping with the ”only connectivity matters” principle, the authors
provide convenience lemmas to re-associate the syntax trees

However, this is pretty time-consuming: authors find that 27% of
all of their tactic applications are just re-association!

DC ⇕ AC

DC ⇕ AC is a tool that checks for equality of two syntactic
ZX-Diagrams

It works by rewriting one side of the proposed equality using the
re-association lemmas in a kind of tree search, while using another
method (E-Graphs) to prevent the search space from blowing up

The authors are not yet capable of extracting a Rocq proof in all
cases from the tool, but this is being actively worked on

Other Features

ZX Calculus has the property that any equality of diagrams also
holds when you swap all of the colors

The authors provide a colorswap tactic which automatically
proves the color-swapped lemma from the original one, and a
similar tactic for transposed lemmas

VyZX has support for inductive proofs, both over the number of
inputs and outputs

In this case, the inductive hypothesis becomes a rewriting rule on a
subdiagram of the proof state

Outline

1. Motivation

2. The ZX Calculus

3. VyZX

4. Conclusion

Contributions

VyZX, a library in Rocq for working with ZX-Calculus

ZXViz, a tool to visualize proof state as a ZX-Diagram

DC ⇕ AC , an automation to show equality of syntactic
ZX-Diagrams

Formal verification example of some compiler optimizations

Future Work

Incorporation of ZX-Calculus extensions into VyZX

One example of this is support for postselection

Verification of surface codes and proving equivalence of different
codes

Extension of VyZX to work with categories other than Qubit

Takeaways

The ZX Calculus is a useful tool for working with quantum
programs, especially for optimization

There is a lot of work to be done in formally verifying quantum
algorithms

Incorporating visual elements into proof assistants can make using
them much easier

Further Reading

”ZX-Calculus for the working quantum computer scientist,” van de
Wetering, 2020, https://arxiv.org/pdf/2012.13966

”VyZX: A vision for verifying the ZX calculus”, 2022,
https://arxiv.org/pdf/2205.05781

”PyZX: Large Scale Diagrammatic Automated Reasoning”, 2020,
https://arxiv.org/pdf/1904.04735v2

