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Motivation

Over the years, the abstractions used to define quantum algorithms
have been lifted from Deutsch’s quantum turing machines to
quantum circuits and eventually quantum programming languages

One of the first major QPLs was QCL, an imperative language
using the qRAM model of computation



Motivation

In 2004, van Tonder defined a quantum lambda calculus which
allows arbitrary quantum computation but forbids measurement

That same year, Selinger proposed a rudimentary functional QPL
which supported measurement, relying on classical control and
quantum data

What about quantum control and quantum data?



A QML Program

had:Q2 ⊸ Q2

had x = if◦x

then{qfalse | -qtrue}
else{qfalse | qtrue}

The if◦ statement does not measure the qubit (unlike if),
this is our quantum control

How do we interpret this as a quantum circuit? Is it even a
well-formed program?
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Background - Category Theory

A category is a collection of objects and arrows between them,
such that:

1. Compatible arrows compose

2. Composition is associative

3. An identity arrow exists for every object

We can visualize some part of a category using a diagram. We say
the diagram commutes if every path composes to give the same
arrow.

A B
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k



Background - Category Theory

Some examples of categories include:

1. Sets and functions between them

2. ”*-morphisms” between Groups, Rings, Vector Spaces

3. Any partial order (lattice)

Any (terminating) programming language gives rise to a category
of types and functions between them:

toString : Int → String



The Category FQC

FQC (Finite Quantum Computation) is the category we will use to
determine what our QML programs ”mean”

Objects are finite sets (A), but we identify them with the Hilbert
space (CA) they generate

Example: the object Q2 ≡ C2 is the one-qubit space

Arrows are unfortunately a bit more complicated...



Arrows in FQC

What should happen when I run a program on my quantum
computer?

An arrow in FQC is given by the following data:

1. A basis H for the space of initial heaps

2. A ”heap initializer” h ∈ CH

3. A basis G for the space of garbage states

4. A unitary ϕ : CA ⊗ CH → CB ⊗ CG

Arrows compose by stacking the transforms together

We define a subcategory FQC◦ of arrows which produce no
garbage



Extensional Equality

When doing classical computation, we consider programs as
”extensionally equal” if they have the same output for every valid
input

x := 0; for i in [1..n]: x += i

∼=

x := n(n+1)/2

More formally, the induced functions A → B are equal as relations



Extensional Equality in FQC

In the quantum case, we use the density matrix formulation and
the partial trace

TrA
1

2
(|10⟩⟨10|+ |11⟩⟨11|) = 1

2
(|0⟩⟨0|+ |1⟩⟨1|)

Extensional equality of quantum computations can now be defined
similarly to the classical case

We ”quotient out” by this extensional equality when talking about
the collection of arrows between objects
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Background - Type Systems

In order to ensure our programs are semantically sound, we want a
way of saying what kinds of values work with which kinds of
operation

(+) : Int → Int → Int

This can be done with a type system, and every sound term in the
programming language can be assigned a type

if (x == 2) then 5 else 7 : Int



Background - Type Derivations

A context Γ is a mapping from variables to types

We have typing judgements of the form Γ ⊢ t : σ, read as ”in
context Γ, t has type σ.”

Typing rules allow us to derive judgements in a procedural way:

If-T
Γ ⊢ t1 : σ Γ ⊢ t2 : σ Γ ⊢ b : Bool

Γ ⊢ if b then t1 else t2 : σ

QML offers a denotational semantics: a procedure to transform
typing derivations into FQC arrows (quantum circuits)



Linear Logic

The typing rules of QML are based on (strict) linear logic

In such logics, derivations require any subderivations to be used
exactly once

Treats judgements as a ”resource” that can’t be thrown away or
duplicated



Linear Logic

Rust’s borrow checker uses linear logic to implement move
semantics

Why use linear logic for QPLs?



Strictness

We discussed earlier the subcategory FQC◦ of strict arrows (no
garbage)

In QML, there is also a strict type judgement Γ ⊢◦ t : σ with the
additional requirement that t is strict

Strict
Γ ⊢◦ t : σ

Γ ⊢ t : σ

Strictness is really just saying that decoherence never happens
during execution



Sum and Product Types

Given some types τ and σ, we would like to form composite types
using them

Values of the product τ ⊗ σ can be viewed as tuples (x , y) with
x : τ, y : σ

Values of the sum τ ⊕ σ can be viewed as a ”tagged union” which
is either a τ or a σ

In QML, the only types are those that can be created via sums and
products of the unit type 1

Q2 = 1⊕ 1



Denotational Semantics of QML

For every type, we can define its magnitude which is the
qubit-width of its values

|1| = 0

|σ ⊗ τ | = |σ|+ |τ |

|σ ⊕ τ | = max(|σ|, |τ |) + 1

We can identify a type with the FQC object of the right size:

[[σ]] = Q
|σ|
2



Denotational Semantics of QML

The denotation of a context is defined recursively:

[[Γ]] = [[(xi : τi )i ]] =
⊗
i

[[τi ]]

If we construct a typing derivation, Γ ⊢ t : σ, this implies that

[[t]] ∈ FQC[[Γ]][[σ]]

In other words: the program t transforms [[Γ]] (the inputs) into
[[σ]]



A taste of the rules

Var-Strict
∅

x : σ ⊢◦ x : σ

Var
∅

Γ, x : σ ⊢ x : σ



A taste of the rules

Prod
Γ ⊢◦ t : σ ∆ ⊢◦ u : τ

Γ⊗∆ ⊢◦ (t, u) : σ ⊗ τ



A taste of the rules

If-Measure
Γ ⊢ c : Q2 ∆ ⊢ t, u : σ

Γ⊗∆ ⊢ if c then t else u : σ



Orthogonality

For if◦, we need an additional ”orthogonality judgement” t⊥u,
built up using similar inference rules

This is needed so that if◦ is always unitary:
the branches don’t ”mix”

The separation of if and if◦ is one of the defining features of QML
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Novel Results

Using the rules so far, we are able to construct arbitrary quantum
functions between types and compile them to circuits

The authors claim this is all we need to write any quantum
program! (why?)

The authors also have implemented a quantum circuit compiler for
QML in Haskell1 (a classical functional PL)

1https://arxiv.org/pdf/0806.2735



Takeaways

Linear logic and types are the natural choice for QPLs

QPLs should have decoherence embedded in their semantics

Higher-level abstractions are needed to reasonably describe the
next generation of quantum algorithms
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