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Hyperbolic geometry differs from Euclidean geometry in the way that we measure
distances between points. Namely, this affects the geodesics (shortest paths)
between points and the notion of “straight lines." Using a conformal mapping, we
can depict the entire complex plane as lying in the unit disk, where the “ruler” of
distance shrinks as we move towards the boundary. Specifically, the a point r
units away from the origin (to our eyes) really has distance

d(r,0) = In (

This realization of hyperbolic space is called the Poincaré disk [2]; we are inter-
ested in the properties of its boundary.
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The Patterson-Sullivan Construction [3]

Given a group [' acting on a point = in the hyperbolic plane, we define its orbit
under I' as
[z={y-x:.vel}

An example of an orbit on the point 0 + ¢ is pictured below.
Our goal is to characterize the proportion of the orbit that lies on the boundary of
the disk. To do this, we first define the Poincaré series
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Here, d measures the hyperbolic distance between the basepoint = and the orbit
point v - z. We then define

0 =inf{s > 0: Qp, < co}.

Intuitively, o is the “dividing line" of convergence, and so it is aptly named the crit-
ical exponent of I'. We remark that ¢ is the Hausdorff dimension of the boundary
as well, and that the series need not converge at 0. Finally, we can define a se-
quence of measures
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where D-~.; is an indicator of the set. This results in adding only the orbit points
belonging to the set, and then normalizing by the total computed previously. Fi-
nally, we can take the associated limit

= lim
e = D+ Hos

which yields the measure we are after. In the remainder of this poster, we explore
examples of the measure and describe two different methods of calculating such
measures numerically.

Fig. 1: The orbit of 0 + ¢ under the Coxeter triangle group (2,3,7)

As a first approach, we used the geometry tools Python library [4] to efficiently generate
truncated orbits under free groups and Coxeter groups. Because these groups have infinite
elements, we only generate elements which are products of up to 25 generators; finite-state
automata can be utilized to efficiently enumerate such elements. With the orbits in hand,

the calculation proceeds as in the previous section. However, since we only have finitely
many group elements, we cannot test for convergence directly. Luckily, we can approximate
0 by fitting an exponential curve to the histogram of distances.
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Fig. 2: A histogram of distances from orbit points to the basepoint 0 + 1.

Once we have o, we select a tolerance for how close points need to be to the edge to be
included, and from here we can calculate the measure over our sample.

The McMullen Algorithm

An algorithm for computing ¢ is outlined in a paper [1] of McMullen. The general idea is
that we partition the boundary into subsets, each with a designated function. We then
compute the preimages of these sample points under the generators and use these to
refine our partition further. With each step we can also compute an approximation to ¢
which converges exponentially with the number of iterations.

We start with a partition ((7;, f;)) of the set under consideration, where each f; is a map
defined on P;. Such an object is called a Markov Partition. Each P, is also equipped with
an associated sample point z;. We say that i — j iff f(F;) N P; # . We then repeat these
steps ad libitum:

1. If 2 — j, find the y;; € F; such that f@(yw) = ;.

2. Gonstruct the matrix given by

/ i

3. Find the real o such that the largest eigenvalue-magnitude of T“ = 1, where the power
IS taken entrywise.
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4. Construct the refinement ((R;;, f;)) where
Rij — fi_l(Pj) N F;.

In practice, our matrix free group affects the mobius transformation
a b az + b
z =
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fiz) = (cz+d)?  (cz+d)?
since our generators have determinant 1. Having invertible generators also makes it much
easier to compute pre-images in this special case. We also note that one can find a numer-

ically using a standard root-finding algorithm found in libraries like SciPy.

with associated derivative

Using the first method, we have successfully computed the critical exponent ¢ of
the free group on the matrix generators

() o-()

with a value of 0 = 0.55. We also recovered the value 6 = 1 on the general
Coxeter triangle group. As for the boundary measure, we have the estimates
1= 0.1 and pu = 1 for the respective groups, but are less confident in the validity
of these results. As the first method requires choosing a tolerance (our points
can never reach the boundary on a computer), the proportion of accumulation
points is difficult to measure directly.

While we did perform some Monte-Carlo sampling during initial investigation of
the problem, we never implemented it into the final pipeline for computing 1
using the first method. This could possibly give us a more accurate estimation
as it allows for enumeration of group elements with a much higher maximum
length.

Unfortunately, we have yet to finish the full implementation of the McMullen al-
gorithm, so completing this would be a top priority in future work. We remark
that 1+ can be computed in the process of running this algorithm, and so an im-
plementation would yield a potentially more accurate method of calculating the
measure.

Another avenue for progress would be to extend this work to different classes of
groups acting in hyperbolic space.
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